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Drift Velocity Induced by Collisions
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Stochastic motion of a hard point separating two semi-infinite subvolumes of a
hard point gas in R1 is studied. The partitionning particle is identical to the
particles of the gas and can be looked upon as a tagged particle playing the role
of a (microscopic) piston. At the initial moment it is at rest having to the right
and to the left of it gases in thermodynamic equilibrium. Its further motion is
entirely induced by collisions. The stochastic motion of the piston is determined
rigorously. The form of the stationary velocity distribution is calculated. It turns
out that at equal initial pressures the piston acquires asymptotically a drift
velocity oriented towards the higher temperature region. There is no drift if the
temperatures and densities combine to produce on both sides equal particle
fluxes. Although the qualitative agreement with Boltzmann’s theory is found,
the Boltzmann equation does not predict correctly the thermodynamic condi-
tions under which the drift vanishes.
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1. INTRODUCTION

Consider a system composed of hard points (hard rods of vanishing dia-
meter) of mass m moving in R1. The motion between collisions is free. At
elastic binary collisions the particles exchange instantaneously their veloci-
ties, which completes the definition of the dynamics.

The initial state considered in this paper has been suggested by the
adiabatic piston problem (see ref. 1 and references given therein). Up to the
initial moment t=0, the system remains separated into two semi-infinite
volumes by a particle clamped at the origin X=0. The immobile particle
plays the role of an isolating, elastically reflecting wall of infinite mass. The
subvolume to the left of the wall is supposed to be in thermal equilibrium
at temperature T−, with number density n−, and perfect gas pressure

File: KAPP/822-joss/104_5-6 342345 - Page : 1/10 - Op: DS - Time: 13:05 - Date: 13:08:2001



p−=n−kBT−, where kB is Boltzmann’s constant. Similarly, the initial equi-
librium state to the right of the wall is characterized by temperature T+,
number density n+, and pressure p+=n+kBT+.

It is thus supposed that at t=0 the velocities of the gas particles are
uncorrelated. Each particle on the negative semi-axis has the velocity dis-
tributed according to Maxwell’s probability density

f−(v)== m
2pkBT−

exp 1 − mv
2

2kBT−
2 (1)

The velocities of the particles filling the positive semi-axis are distributed
with probability density f+(v), obtained from (1) by replacing T− by T+.

As far as the space distribution is concerned, in any interval of finite
length to the left and to the right of the origin the particles have the
Poisson distribution with constant density n−, and n+, respectively.

Then, at the moment t=0, the partitioning wall is released, and
becomes thus a moving microscopic piston, mechanically identical to the
particles of the surrounding gas. Its mass equals m, and owing to elastic
collisions the tagged particle called here a piston (for the reasons explained
above) starts following a stochastic process.

Our object here is to derive rigorously the dynamical law governing
the evolution of the probability density f(X, V; t) for finding the piston at
time t > 0 at point X with velocity V. The present work is a natural conti-
nuation of article (2) in which the same problem has been solved within the
framework of Boltzmann’s kinetic theory. In ref. 2 particular attention has
been paid to the case of equal initial pressures. It has been demonstrated
that even if the macroscopic mechanical equlibrium condition p−=p+ was
satisfied at t=0, the stationary state of the piston was characterized by a
non-zero average velocity oriented towards the higher temperature region.
It turns out that a rigorous study confirms this most interesting manifesta-
tion of fluctuations showing the qualitative correctness in this respect of
Boltzmann’s approximate theory. However, according to the rigorous
solution of the Boltzmann equation found in ref. 2, the drift velocity
vanishes when the condition

F
.

0
dv
p−f−(v)
I2(v)

=F
0

−.
dv
p+f+(v)
I2(v)

(2)

is satisfied, with

I(v)=
1
m
[p−f−(v)+p+f+(v)]+v 5F v

−.
dwn+f+(w)−F

.

v
dwn−f−(w)6 (3)
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(In fact, (2) is an extension of the result obtained in ref. 2 to the case of
different initial pressures.) As it will be shown here, equation (2) does not
predict correctly the relation between the thermodynamic parameters
p−, p+, T−, T+ for which the drift vanishes.

The ideas used in this paper follow closely the method invented by
D. W. Jepsen (3) to solve the N-body problem for hard rods. More precisely,
we use the elegant generalization of Jepsen’s approach developed by J. L.
Lebowitz and J. K. Percus. (4) Similar ideas have been also applied in a
recent work (5) in which the stochastic process followed by the piston
moving in a finite volume was shown to approach in an appropriate scaling
limit a deterministic trajectory, the whole system tending to a uniform
equilibrium state.

In Section 2 the formula for the state of the piston f(X, V; t) for t > 0
is derived in a systematic way. Section 3 contains the analysis of physical
implications of analytical results.

2. DYNAMICAL EVOLUTION OF THE PISTON

At the initial moment the piston is found at point X0=0 with velocity
V0=0. So, the initial condition for the density f(X, V; t) reads

f(X, V; 0)=d(X) d(V) (4)

where d is the Dirac distribution. We suppose that to the left of the piston
there are N− particles distributed within the interval (−L, 0). Their initial
states are (Xj, Vj), j=−1, −2, ..., −N−, were Xj and, Vj denote the posi-
tion and the velocity of particle j, respectively. Similarly, within the interval
(0,+L) on positive semi-axis there are N+ particles occupying the states
(Xj, Vj), j=1, 2, ..., N+.

The hard point dynamics with free boundary conditions implies that
the piston at any moment follows one of the free trajectories (Xa+Vat) with
velocity Va, where a ¥ {−N−, ..., −1, 0, +1, ..., N+}.

As the number of particles on the left-hand side of the piston is a con-
served quantity we can identify the free trajectory (Xa+Vat) followed by
the piston at time t by imposing the requirement

C
N+

j=−N−, j ] a
h(Xa+Vat−Xj−Vjt)=N− (5)

where h is the unit Heaviside step function.
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Therefore, the state of the piston at time t > 0 is given by the formula

fL(X, V; t)=7 C
N+

a=−N−
d(X−Xa−Vat) d(V−Va)

×dKr 1N−, C
N+

j=−N−, j ] a
h(Xa+Vat−Xj−Vjt)28 (6)

where the brackets O...P denote averaging over the initial statistical
ensemble.

In order to pursue the calculation it is convenient to use the integral
representation of the Kronecker delta dKr(a, b) in the form

dKr(a, b)=F
C

dz
2piz

z (a−b), a, b integers (7)

where the contour C in the complex z-plane is a unit circle centered at the
origin.

A straightforward calculation, analogous to that described in detail in
ref. 4, leads then to the formula

fL(X, V; t)=F
C

dz
2piz

[A(z, X/t | L/t)]N
−
[B(z, X/t | L/t)]N

+

×{n−f−(V) h(Vt−X) h(X−Vt+L)[A(z, X/t|L/t)] −1

×[1+(z−1) h(−X)]+d(X) d(V)

+n+f+(V) h(X−Vt) h(L−X+Vt)[1+(z −1−1) h(X)]

×[B(z, X/t|L/t)] −1} (8)

Here

A(z, X/t | L/t)

=1+(z−1) 5F.
(L+X)/t

dUf−(U)+
1
L
F
(X+L)/t

X/t
dU(Ut−X) f−(U)6 (9)

B(z, X/t | L/t)

=1+(z −1−1) 5F (X−L)/t
−.

dUf+(U)+
1
L
F
X/t

(X−L)/t
dU(X−Ut) f+(U)6

(10)
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Equations (8), (9), (10) define the statistical state of the piston for any
initial volume [−L, +L] with free boundary conditions. In order to
determine the evolution of the piston in an infinite space R1 we have thus
to take the limit LQ., at fixed X, V, t and at fixed number densities n ±.
We consider in this way a purely intrinsic dynamics of the system, with no
influence of the boundaries. This situation is quite different from that
studied in ref. 5 where recollisions with the boundaries played an essential
role.

Taking the LQ. limit we find

f(X, V; t) — lim
LQ.
fL(X, V; t)=F

C

dz
2piz
3d(X) d(V)+n−f−(V) h(Vt−X)

×[1+(z−1) h(−X)]+n+f+(V) h(X−Vt)51+11
z
−12 h(X)64

× exp 3n−(z−1) F.
X/t
dU(Ut−X) f−(U)

+n+11
z
−12 FX/t

−.
dU(X−Ut) f+(U)4 (11)

Equation (11) defines the state of the piston for any t > 0. The proba-
bility density f(X, V; t) can be expressed in terms of the Bessel functions
owing to the formula

F
C

dz
2piz

exp 5za+1
z
b6=I0(2`ab) (12)

We shall also use the relation

d
dz
I0(z)=I1(z) (13)

Let us introduce the shorthand notation

a(X/t)=F
.

X/t
dU 1U−X

t
2 f−(U) (14)

b(X/t)=F
X/t

−.
dU 1X

t
−U2 f+(U) (15)
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Equations (12), (13) permit to rewrite the formula for the state of the
piston in the form

f(X, V; t)=R(t) d(X) d(V)+exp{−t[n−a(X/t)+n+b(X/t)]}

×3[n−f−(V) h(Vt−X) h(X)+n+f+(V) h(X−Vt) h(−X)]

×I0(2t`n−n+a(X/t) b(X/t))

+5n−f−(V) h(Vt−X) h(−X)=n
+b(X/t)
n−a(X/t)

+n+f+(V) h(X−Vt) h(X)]=n
−a(X/t)
n+b(X/t)
6

×I1(2t`n−n+a(X/t) b(X/t))4 (16)

The coefficient R(t) of the product d(X)d(V) is given by

R(t)=exp{−t[n−a(0)+n+b(0)]} I0(2t`n−n+a(0) b(0)) (17)

where (see equations (14), (15))

a(0)=`kBT−/2pm, b(0)=`kBT+/2pm

Clearly, R(t) represents the probability weight for finding the piston in its
initial state for t > 0. When tQ., the asymptotic behaviour of the Bessel
functions In(z) for large |z|

In(z) %
ez

`2pz
(18)

implies the rapid vanishing of R(t) according to the formula

R(t) ’
exp{−t[`n−a(0)−`n+b(0)]2}

2`pt`n−n+a(0)b(0)
(19)

Notice that this exponential decrease is significantly slowed down to a
power law ’ t −1/2 when the condition

n−`kBT−=n+`kBT+ (20)
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is satisfied. Equation (20) expresses the equality of the initial collision
frequencies (particle fluxes) on the left- and on the right-hand side of the
piston.

The formula (16) is the main result of our calculation. Its physical
content is discussed in the next section.

3. ASYMPTOTIC DRIFT VELOCITY

The velocity of the piston is entirely induced by collisions. We shall
focus here on the study of the long time behaviour of the velocity distribu-
tion

f(V; t)=F dX f(X, V; t)

=R(t) d(V)+t F dW exp{−t[n−a(W)+n+b(W)]}

×3[n−f−(V) h(V−W) h(W)+n+f+(V) h(W−V) h(−W)]

×I0(2t`n−n+a(W)b(W))

+5n−f−(V) h(V−W) h(−W)=n
+b(W)
n−a(W)

+n+f+(V) h(W−V) h(W)]=n
−a(W)
n+b(W)
6

×I1(2t`n−n+a(W) b(W))4 (21)

In writing equation (21) the change of the integration variable X=Wt
has been used.

The first term on the right hand side of (21) has been already analyzed.
Using the large |z| asymptotics (18) of the Bessel functions we find that
when tQ., the remaining terms take the form

F dW
`t

2`p`n−n+a(W) b(W)
exp{−t[`n−a(W)−`n+b(W)]2}

×3n−f−(V) h(V−W) 5h(W)+h(−W)=n
+b(W)
n−a(W)
6

+n+f+(V)h(W−V) 5h(−W)+h(W)=n
−a(W)
n+b(W)
64 (22)
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The integrand in (22), considered as a function of variableW, vanishes
for tQ. everywhere but in one point W̄ solving the equation

n−a(W̄)=n+b(W̄) (23)

or, (see definitions (14), (15))

n− F
.

W̄
dU(U−W̄) f−(U)=n+ F

W̄

−.
dU(W̄−U) f+(U) (24)

When W=W̄, the integrand diverges as `t . Considering the tQ.
limit we can thus rewrite equation (21) as

f(V; t)=
`t

2`p`n−n+a(W̄) b(W̄)
{n−f−(V) h(V−W̄)

+n+f+(V) h(W̄−V)}

×F dW exp 3 −t 5= n
−

a(W̄)
aŒ(W̄)−= n

+

b(W̄)
bŒ(W̄)6

2 1W−W̄
2
224

(25)

where aŒ(W), bŒ(W) are first order derivatives of a(W) and b(W), respec-
tively.

aŒ(W)=−F
.

W
dU f−(U) (26)

bŒ(W)=F
W

−.
dU f+(U) (27)

Evaluating the integral we find eventually the following asymptotic
form of the velocity distribution

f.(V)=
1

X(W̄)
[n−f−(V) h(V−W̄)+n+f+(V) h(W̄−V)] (28)

where X is the normalizing factor

X(W̄)=n− F
.

W̄
dU f−(U)+n+ F

W̄

−.
dU f+(U)
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Equation (28) shows the simple structure of the asymptotic stationary
velocity distribution of the piston. The stationary drift velocity OVP equals

OVP.=F dV Vf.(V)=
1

mX(W̄)
[n−kBT−f−(W̄)−n+kBT+f+(W̄)] (29)

Let us recall that in equations (28) and (29) the velocity W̄ is the solution
of equation (24), so that W̄ is a zero of function q defined by

q(W)=n−kBT−f−(W)−n+kBT+f+(W)

−mW 1n− F.
W
dU f−(U)+n+ F

W

−.
dU f+(U)2 (30)

It follows that OVP.=W̄.
Notice that q(W) is a monotonically decreasing function, with exactly

one zero, which shows that the drift velocity is uniquely defined. When
condition (20) of equal fluxes is satisfied, we find W̄=0 and no drift is
present. Of course, W̄=0 when both the temperatures and the pressures
are equal on both sides of the piston. In this case our general formula (16)
reduces to the solution of the self-diffusion problem derived in refs. 3 and 4
and equation (29) becomes f.(V)=f−(V)=f+(V), reflecting the asymp-
totic approach to thermal equilibrium.

However, if the initial pressures are equal

p=n−kBT−=n+kBT+

a nonzero drift occurs for nonzero temperature difference

OVP.=
p

mX(W̄)
(f−(W̄)−f+(W̄)) (31)

Suppose that p−=p+=p, and T+> T−. Then

q(0)=p 5= m
2pkBT−

−= m
2pkBT+
6 > 0

As the function q(W) is monotonically decreasing, it attains zero for W=
W̄ > 0. The drift is thus oriented towards the higher temperature region.

This rigorous conclusion qualitatively coincides with the prediction
based on Boltzmann’s kinetic equation. (2) However, as it has been already
remarked in the introduction, the Boltzmann equation does not predict the
vanishing of the drift at equal fluxes, yielding rather a different, and phy-
sically less transparent condition (2). We find here the situation where
neglecting the recollision processes, which create precollisional correlations,
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absent in Boltzmann’s theory, leads to an erroneous prediction. It is only
by taking into account all possible dynamic events, inculding the interac-
tion of the piston with the perturbations it causes in the states of the
surrounding medium, that we arrive at a simple equal flux condition (20).

We have mentioned in the introduction that the choice of the initial
state in the present paper was suggested by the thermodynamic adiabatic
piston problem. (1) This is also why our discussion was focused on the phe-
nomenon of the drift velocity induced by collisions. Of course, one can
look at the probability density (16) as describing self-diffusion in a special
type of an inhomogeneous medium, composed of two semi-infinite volumes
of the gas in different thermodynamic states. A general study of the motion
of a tagged particle in an inhomogeneous environment presents an
interesting question for future investigation (for previous works on this
subject see refs. 6 and 7).

A still challenging problem is to develop a rigorous approach in the
case where the mass of the pistonM is different from that of the surround-
ing particles. The perturbative argument based on the Boltzmann equation
predicts a nonzero drift at equal pressures even for M± m. (8) A quite dif-
ferent dynamical evolution occurs when the system fills a finite volume and
boundary conditions become of great importance. In a recent work dealing
with this question a scaling regime for a massive piston in an ideal gas has
been studied, leading to a system of coupled autonomous equations whose
physical content is still being analyzed (9).

Finally, it seems worth noting that the solution (16) contains the
complete information about the modes of approach to the asymptotic sta-
tionary state for arbitrary values of the initial thermodynamic parameters.
We plan to study this question thoroughly.
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